Role of Different Order Ranges of Autocorrelation Sequence on the Performance of Speech Recognition

نویسندگان

  • POONAM BANSAL
  • AMITA DEV
  • SHAIL BALA JAIN
چکیده

In this paper, cepstral features derived from the Differentiated Relative Higher Order Autocorrelation Sequence Spectrum (DRHOASS) are proposed for improving the robustness of a speech recognizer in the presence of background noise. Proposed method is analyzed and compared in terms of the autocorrelation coefficients they employ with the traditional feature extraction methods based on Linear Pediction (LP) analysis. LPbased techniques used are Linear Predictive Cepstral Coefficients (LPCC), Short-Time Modified Coherence (SMC) and the One-Sided Autocorrelation Linear Prediction Coefficient (OSALPC). We evaluate the speech recognition performance of the proposed features on the Hindi isolated-word task and show that the proposed features show better recognition performance than the features derived from the robust liner prediction based methods for noisy speech.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving the performance of MFCC for Persian robust speech recognition

The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...

متن کامل

Persian Phone Recognition Using Acoustic Landmarks and Neural Network-based variability compensation methods

Speech recognition is a subfield of artificial intelligence that develops technologies to convert speech utterance into transcription. So far, various methods such as hidden Markov models and artificial neural networks have been used to develop speech recognition systems. In most of these systems, the speech signal frames are processed uniformly, while the information is not evenly distributed ...

متن کامل

Improving Phoneme Sequence Recognition using Phoneme Duration Information in DNN-HSMM

Improving phoneme recognition has attracted the attention of many researchers due to its applications in various fields of speech processing. Recent research achievements show that using deep neural network (DNN) in speech recognition systems significantly improves the performance of these systems. There are two phases in DNN-based phoneme recognition systems including training and testing. Mos...

متن کامل

A Comparative Study of Gender and Age Classification in Speech Signals

Accurate gender classification is useful in speech and speaker recognition as well as speech emotion classification, because a better performance has been reported when separate acoustic models are employed for males and females. Gender classification is also apparent in face recognition, video summarization, human-robot interaction, etc. Although gender classification is rather mature in a...

متن کامل

Robust Feature Vector Set Using Higher Order Autocorrelation Coefficients

In this paper, a feature extraction method that is robust to additive background noise is proposed for automatic speech recognition. Since the background noise corrupts the autocorrelation coefficients of the speech signal mostly at the lower orders, while the higher-order autocorrelation coefficients are least affected, this method discards the lower order autocorrelation coefficients and uses...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010